Asymptotics for regression models under loss of identifiability
نویسنده
چکیده
This paper discusses the asymptotic behavior of regression models under general conditions. First, we give a general inequality for the difference of the sum of square errors (SSE) of the estimated regression model and the SSE of the theoretical best regression function in our model. A set of generalized derivative functions is a key tool in deriving such inequality. Under suitable Donsker condition for this set, we give the asymptotic distribution for the difference of SSE. We show how to get this Donsker property for parametric models even if the parameters characterizing the best regression function are not unique. This result is applied to neural networks regression models with redundant hidden units when loss of identifiability occurs.
منابع مشابه
Identifiability in penalized function-on-function regression models
Regression models with functional responses and covariates constitute a powerful and increasingly important model class. However, regression with functional data poses well known and challenging problems of non-identifiability. This non-identifiability can manifest itself in arbitrarily large errors for coefficient surface estimates despite accurate predictions of the responses, thus invalidati...
متن کاملIdentifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions
This article is concerned with identification problem of parameters of Dynamic Stochastic General Equilibrium Models with emphasis on structural constraints, so that the number of observable variables is equal to the number of exogenous variables. We derived a set of identifiability conditions and suggested a procedure for a thorough analysis of identification at each point in the parameters sp...
متن کاملA Framework for Testing Identifiability of Bayesian Models of Perception
Bayesian observer models are very effective in describing human performance in perceptual tasks, so much so that they are trusted to faithfully recover hidden mental representations of priors, likelihoods, or loss functions from the data. However, the intrinsic degeneracy of the Bayesian framework, as multiple combinations of elements can yield empirically indistinguishable results, prompts the...
متن کاملOn the Identifiability of Additive Index Models
In this paper, we investigate the identifiability of the additive index model, also known as projection pursuit regression. Although a flexible regression tool, additive index models can be hard to interpret in practice due to a lack of identifiability. As noted by Horowitz (1998), “it is an open question whether there are identifying restrictions that yield useful forms”, in reference to addit...
متن کاملParameter Identifiability and Redundancy: Theoretical Considerations
BACKGROUND Models for complex biological systems may involve a large number of parameters. It may well be that some of these parameters cannot be derived from observed data via regression techniques. Such parameters are said to be unidentifiable, the remaining parameters being identifiable. Closely related to this idea is that of redundancy, that a set of parameters can be expressed in terms of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013